Basal Body and Flagellar Development During the Vegetative Cell Cycle and the Sexual Cycle of Chlamydomonas Reinhardii

Author:

CAVALIER-SMITH T.1

Affiliation:

1. Department of Biophysics, University of London King's College 26-29 Drury Lane, London, WC2B 5RL, England

Abstract

Basal body development and flagellar regression and growth in the unicellular green alga Chlamydomonas reinhardii were studied by light and electron microscopy during the vegetative cell cycle in synchronous cultures and during the sexual life cycle. Flagella regress by gradual shortening prior to vegetative cell division and also a few hours after cell fusion in the sexual cycle. In vegetative cells basal bodies remain attached to the plasma membrane by their transitional fibres and do not act as centrioles at the spindle poles during division. In zygotes the basal bodies and associated microtubular roots and cross-striated connexions all dissolve, and by 6.5 h after mating all traces of flagellar apparatus and associated structures have disappeared. They remain absent for 6 days throughout zygospore maturation and then are reassembled during zygospore germination, after meiosis has begun. Basal body assembly in developing zygospores occurs close to the plasma membrane (in the absence of pre-existing basal bodies) via an intermediate stage consisting of nine single A-tubules surrounding a central ‘cartwheel’. Assembly is similar in vegetative cells (and occurs prior to cell division), except that new basal bodies are physically attached to old ones by amorphous material. In vegetative cells, amorphous disks, which may possibly be still earlier stages in basal-body development occur in the same location as 9-singlet developing basal bodies. After the 9-singlet structure is formed, B and C fibres are added and the basal body elongates to its mature length. Microtubular roots, striated connexions and flagella are then assembled. Both flagellar regression and growth are gradual and sequential, the transitional region at the base of the flagellum being formed first and broken down last. The presence of amorphous material at the tip of the axoneme of growing and regressing flagella suggests that the axoneme grows or shortens by the sequential assembly or disassembly at its tip. In homogenized cells basal bodies remain firmly attached to each other by their striated connexions. The flagellar transitional region, and parts of the membrane and of the 4 microtubular roots, also remain attached; so also do new developing basal bodies, if present. These structures are well preserved in homogenates and new fine-structural details can be seen. These results are discussed, and lend no support to the idea that basal bodies have genetic continuity. It is suggested that basal body development can be best understood if a distinction is made between the information needed to specify the structure of a basal body and that needed to specify its location and orientation.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3