Ultrastructural Aspects of Encystation and Cyst-Germination in Phytophthora Parasitica

Author:

HEMMES D. E.1,HOHL H. R.1

Affiliation:

1. Pacific Biomedical Research Center and Department of Microbiology, University of Hawaii, Honolulu, Hawaii; Cytological laboratory, University of Zurich, Birchstrasse 95, 8050 Zurich, Switzerland.

Abstract

Encystation in Phytophthora parasitica can be divided into 3 stages. In the first, the zoospores line their peripheries with flattened vesicles and fibrillar vacuoles in preparation for encystation. In the second stage, as the zoospores round up and shed their flagella, an initial wall is produced which takes the form of the mature cyst wall in thickness, but not in density. The participation of the flattened vesicles and fibrillar vacuoles in the formation of this initial wall is suggested by the disappearance of these organelles concomitant with wall formation. The third stage involves the maturation of the cyst wall and occurs only after dictyosomes produce vesicles which move to the cyst periphery and fuse to the plasmalemma. Germ tubes are formed in direct and indirect germination and involve the evagination of the plasmalemma and cyst wall proximal to an accumulation of dictyosome-derived vesicles. These vesicles remain at the germ-tube tip as it extends. In indirect germination the germ tube stops after having attained an average length of 6 µm and the vesicles appear to fuse at the hyphal apex, thus forming a cap. Lomasomes do not appear to be cell organelles with a specific function such as well synthesis, but rather seem to represent aggregations of excess membranous material that have formed as a result of the discharge of vesicles at the cell periphery during wall formation. When dictyosome vesicles are inhibited from forming and moving toward the cell periphery, lomasomes are not formed.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3