Tif1γ is essential for the terminal differentiation of mammary alveolar epithelial cells and for lactation through SMAD4 inhibition

Author:

Hesling Cédric1,Lopez Jonathan123,Fattet Laurent1,Gonzalo Philippe123,Treilleux Isabelle1,Blanchard Daphné1,Losson Régine4,Goffin Vincent5,Pigat Natascha5,Puisieux Alain12,Mikaelian Ivan12,Gillet Germain12,Rimokh Ruth12

Affiliation:

1. Centre de Recherche en Cancérologie de Lyon, Inserm UMR-S1052, CNRS UMR5286, Centre Léon Bérard, Lyon, France.

2. Université de Lyon, Lyon, France.

3. Fédération de Biochimie Nord – Hôpital de la Croix-Rousse – Hospices Civils de Lyon, Lyon, France.

4. Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.

5. Centre de Recherche Croissance et Signalisation, Inserm U845, Paris, France.

Abstract

Transforming growth factor β (TGFβ) is widely recognised as an important factor that regulates many steps of normal mammary gland (MG) development, including branching morphogenesis, functional differentiation and involution. Tif1γ has previously been reported to temporally and spatially control TGFβ signalling during early vertebrate development by exerting negative effects over SMAD4 availability. To evaluate the contribution of Tif1 γ to MG development, we developed a Cre/LoxP system to specifically invalidate the Tif1g gene in mammary epithelial cells in vivo. Tif1g-null mammary gland development appeared to be normal and no defects were observed during the lifespan of virgin mice. However, a lactation defect was observed in mammary glands of Tif1g-null mice. We demonstrate that Tif1 γ is essential for the terminal differentiation of alveolar epithelial cells at the end of pregnancy and to ensure lactation. Tif1 γ appears to play a crucial role in the crosstalk between TGFβ and prolactin pathways by negatively regulating both PRL receptor expression and STAT5 phosphorylation, thereby impairing the subsequent transactivation of PRL target genes. Using HC11 cells as a model, we demonstrate that the effects of Tif1g knockdown on lactation depend on both SMAD4 and TGFβ. Interestingly, we found that the Tif1γ expression pattern in mammary epithelial cells is almost symmetrically opposite to that described for TGFβ. We propose that Tif1γ contributes to the repression of TGFβ activity during late pregnancy and prevents lactation by inhibiting SMAD4.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3