Control and Co-ordination of Ventilation and Circulation in Crustaceans: Responses to Hypoxia And Exercise

Author:

TAYLOR E.W.1

Affiliation:

1. Department of Zoology and Comparative Physiology, University of Birmingham P.O. Box 363, Birmingham B15 2TT

Abstract

The functional morphology, nervous and hormonal control and coordination of the cardiovascular and ventilatory systems in decapodan crustaceans is reviewed. Pacemaker function reflects the reliance of crustaceans on small numbers of large, multipolar neurones. Respiratory gas exchange and transport may be limited by the potential diffusion barrier presented by chitin on the gills and by the relatively low O2 capacity of the haemolymph, though this is compensated by the relatively high O2 affinity of haemocyanin and the large volume of the haemocoel. Haemolymph buffering capacity is attributable to haemocyanin and to bicarbonate, including an internal source of fixed base, possibly the exoskeleton. The typical hypoxic response includes a bradycardia and hyperventilation resulting in a respiratory alkalosis and resultant increase in O2 affinity of the haemocyanin. Diffusive conductance may increase. When O2 transport is limiting there is a switch to anaerobiosis with normoxic recovery including repayment of an O2 debt. Some species are facultative air-breathers and compensate for a respiratory and metabolic acidosis when in air by elevation of buffer base. Central and peripheral O2 receptors may be involved in determining respiratory and cardiovascular responses to hypoxia and airbreathers may respond to changes in haemolymph pH. Exercise induces a rapid increase in ventilation, diffusive conductance improves and O2 consumption is elevated. There is also a major anaerobic contribution causing a metabolic acidosis and recovery includes prolonged repayment of an O2 debt.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diversity of decapod crustaceans in a neotropical coastal lagoon interconnected with the sea/estuary;Regional Studies in Marine Science;2024-04

2. Emersion and hypoxia;Ecophysiology of the European Green Crab (Carcinus Maenas) and Related Species;2024

3. Respiratory and cardiovascular system;Ecophysiology of the European Green Crab (Carcinus Maenas) and Related Species;2024

4. Functional role of lacunar and muscular systems in the externa of Peltogasterella gracilis (Cirripedia: Rhizocephala);Journal of Morphology;2023-08-22

5. How the green crab Carcinus maenas copes physiologically with a range of salinities;Journal of Comparative Physiology B;2022-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3