Activation of Smad2 but not Smad3 is required for mediating TGF-beta signaling during limb regeneration in axolotls

Author:

Denis Jean-François1,Sader Fadi1,Gatien Samuel1,Villiard Éric2,Philip Anie3,Roy Stéphane12ORCID

Affiliation:

1. Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal (Québec), Canada

2. Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal (Québec), Canada

3. Department of Surgery, Faculty of Medicine, McGill University, Montréal (Québec), Canada

Abstract

Axolotls are unique amongst vertebrates in their ability to regenerate their tissues (e.g. limbs, tail, skin etc.). The axolotl limb is the most studied regenerating structure. The process is well characterized morphologically; however, it is not well understood at the molecular level. We demonstrate that TGF-β1 is highly regulated during regeneration and that its signaling is necessary. The present study clearly shows that the basement membrane is not prematurely formed in animals treated with the TGF-β antagonist SB-431542. More importantly, it shows that Smad2 and Smad3 are differentially regulated post-translationally during the preparation phase of limb regeneration. Using specific antagonists for Smad2 and Smad3, results indicate that Smad2 is responsible for the action of TGF-β during regeneration and that Smad3 is not required. We also show that Smad2 target genes (MMP2 & 9) are inhibited in SB-431542 treated limbs and non-canonical TGF-β targets are not affected (e.g. MMP13). This is the first study to show that Smad2 and Smad3 are differentially regulated during regeneration and places Smad2 at the heart of TGF-β signaling supporting the regenerative process.

Funder

Institute of Musculoskeletal Health and Arthritis

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3