Respiratory Exchange and Evaporative Water Loss in the Flying Budgerigar

Author:

TUCKER VANCE A.1

Affiliation:

1. Department of Zoology, Duke University, Durham, North Carolina

Abstract

1. Oxygen consumption of 2 budgerigars (Melopsittacus undulatus) was measured during level, ascending and descending nights lasting 5-20 min. in a wind-tunnel at speeds between 19 and 48 km./hr. In level flight oxygen consumption was lowest at 35 km./hr. with a mean value of 21.9 ml. (g. hr.)-1 or 12.8 times the standard value calculated for these birds (weight = 35 g.). At a given speed oxygen consumption was highest for ascending flight and lowest for descending flight. 2. Carbon dioxide production was measured on one bird flying level at 35 km./hr.for 20 min. The ratio of carbon dioxide production to oxygen consumption was 0.780, indicating that the bird was oxidizing primarily fat. 3. The efficiencies of level, ascending and descending flight are discussed. The measurements indicate that for the budgerigar 42 km./hr. is the most economical speed for covering distance, and below 27 km./hr. undulating flight is more economical than flight at a constant altitude. 4. Evaporative water loss in level flight was measured in two birds for 20 min. at 35 km./hr. at temperatures of 18-200 and 29-31° C. At 36-37° C. the birds became overheated and would not fly for as long as 20 min. Evaporative water loss at 18-20° C. was 20.4 mg. (g. hr.)-1. It increased to 63.9 mg. (g. hr.)-1 at 36-37° C. After accounting for metabolic water production and faecal water loss, budgerigars flying at 18-20°C. had a net water loss of 11 mg. (g. hr.)-1. At this temperature 15% of the estimated heat production in flight was lost by evaporation of water, while 47% was lost by evaporation of water at 36-37°C. 5. Lung ventilation, tidal volume and partial pressure of carbon dioxide in expired air were estimated for flying budgerigars from evaporative water-loss data. In level flight at 18-20° C and 35 km./hr. these quantities had values of 398 ml. (g. hr.)-1, 0.033 ml. (g- breath)-1 and 37 mm. Hg. respectively. 6. Respiratory rate in level flight was measured in 2 birds at speeds between 19 and 48 km./hr. Respiratory rate depended on speed and was lowest at 35 km./hr. Since wing-beat frequency was constant at 840 beats/min. at all speeds, respiratory rate and wing-beat frequency were not synchronized. Published data and analysis of dimensional relations of birds suggest that in birds the size of a budgerigar or smaller a respiratory rate equal to the wing-beat frequency would be too high for efficient ventilation of the lungs. Birds the size of a pigeon or larger probably have synchronous wing beats and respirations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 195 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weather and migration;The Migration Ecology of Birds;2024

2. How birds dissipate heat before, during and after flight;Journal of The Royal Society Interface;2023-12

3. Preadaptivity of Noncontractile Thermogenesis in the Evolution of Warm-Bloodedness in Vertebrates;Biology Bulletin Reviews;2023-11-28

4. Preadaptivity of Non-Contractive Thermogenesis in the Evolution of Warm-Bloodedness in Vertebrates;Успехи современной биологии;2023-07-01

5. A review of bird-like flapping wing with high aspect ratio;Chinese Journal of Aeronautics;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3