Effects of maternal androgens and their metabolite etiocholanolone on prenatal development in birds

Author:

Wang Yuqi1ORCID,Riedstra Bernd1,Groothuis Ton1

Affiliation:

1. University of Groningen, Groningen Institute for Evolutionary Life Sciences , 9700 AB Groningen , The Netherlands

Abstract

ABSTRACT Offspring phenotypes can be affected by maternal testosterone and androstenedione (A4), which are considered a tool of mothers to adjust offspring to a fluctuating environment. Yet testosterone and A4 are very rapidly metabolized by developing avian embryos, suggesting that either the maternal testosterone and A4 have potent organizational effects on the embryos extremely early before being metabolized or it is the metabolites that evoke phenotypic variation in the offspring. One of the metabolites, etiocholanolone, increases substantially during early embryonic development and is a likely candidate for mediating maternal effects as it can promote erythropoiesis. To investigate and compare the effects of testosterone and A4 with the possible effects of etiocholanolone during prenatal embryonic development, we increased their levels in black-headed gull eggs (Larus ridibundus), and used sham-injected eggs as controls. This species usually has 3-egg clutches in which maternal androgen levels increase with the egg-laying sequence. We analysed embryonic heart rate, peri-hatching biometric traits, the ratio of white to red blood cells (W/R ratio) and bursa development. We found that testosterone and A4 treatment increased embryonic heart rate irrespective of egg-laying sequence and decreased bill length and W/R ratio, whereas etiocholanolone did not mimic these effects. Instead, etiocholanolone treatment decreased tarsus length and brain mass. Our finding that etiocholanolone does not mimic the effects induced by testosterone and A4 suggests that the embryonic metabolism of maternal testosterone and A4 can potentially diversify the function of these maternal androgens.

Funder

University of Groningen

Publisher

The Company of Biologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3