Tensional forces in fibrillar extracellular matrices control directional capillary sprouting

Author:

Korff T.1,Augustin H.G.1

Affiliation:

1. Cell Biology Laboratory, Department of Gynecology and Obstetrics, University of Gottingen Medical School, Germany.

Abstract

During angiogenesis, anastomosing capillary sprouts align to form complex three-dimensional networks of new blood vessels. Using an endothelial cell spheroid model that was developed to study endothelial cell differentiation processes, we have devised a novel collagen gel-based three-dimensional in vitro angiogenesis assay. In this assay, cell number-defined, gel-embedded endothelial cell spheroids act as a cellular delivery device, which serves as a focal starting point for the sprouting of lumenized capillary-like structures that can be induced to form complex anastomosing networks. Formation of capillary anastomoses is associated with tensional remodeling of the collagen matrix and directional sprouting of outgrowing capillaries towards each other. To analyze whether directional sprouting is dependent on cytokine gradients or on endothelial cell-derived tractional forces transduced through the extracellular matrix, we designed a matrix tension generator that enables the application of defined tensional forces on the extracellular matrix. Using this matrix tension generator, causal evidence is presented that tensional forces on a fibrillar extracellular matrix such as type I collagen, but not fibrin, are sufficient to guide directional outgrowth of endothelial cells. RGD peptides but not control RAD peptides disrupted the integrity of sprouting capillary-like structures and induced detachment of outgrowing endothelial cells cultured on top of collagen gels, but did not inhibit primary outgrowth of endothelial cells. The data establish the endothelial cell spheroid-based three-dimensional angiogenesis technique as a standardized, highly reproducible quantitative assay for in vitro angiogenesis studies and demonstrate that integrin-dependent matrix tensional forces control directional capillary sprouting and network formation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3