Temperature compensation of aerobic capacity and performance in the Antarctic pteropod, Clione antarctica, compared to its northern congener, C. limacina

Author:

Dymowska Agnieszka K.1,Manfredi Thomas2,Rosenthal Joshua J. C.3,Seibel Brad A.2

Affiliation:

1. University of Alberta; University of Rhode Island;

2. University of Rhode Island;

3. University of Puerto Rico/RCM

Abstract

Summary In ectotherms living in cold waters, locomotory performance is constrained by a slower generation of the ATP that is needed to fuel muscle contraction. Both polar and temperate pteropods of the genus Clione, however, are able to swim continuously by flapping their parapodia (wings) at comparable frequencies, despite the latitudinal temperature gradient. Therefore, we expected polar species to have increased aerobic capacities in their wing muscles. We investigated muscle and mitochondrial ultrastructure of Clione antarctica from the Southern Ocean (-1.8ºC) and populations of a sister species, Clione limacina, from the Arctic (-0.5-3ºC) and from the N. Atlantic (10ºC). We also measured oxygen consumption and the activity of the mitochondrial enzyme citrate synthase (CS), in isolated wings of the two species. The Antarctic species showed a substantial up-regulation of the density of oxidative muscle fibers, but at the expense of fast-twitch muscle fibers. Mitochondrial capacity was also substantially increased in the Antarctic species, with the cristae surface density (58.2±1.3 µm2/µm3) more than twice that found in temperate species (34.3±0.8 µm2/µm3). Arctic C. limacina was intermediate between these two populations (43.7±0.5 µm2/µm3). The values for cold adapted populations are on par with those found in high-performance vertebrates. As a result of oxidative muscle proliferation, CS activity was 4-fold greater in C. antarctica wings than in temperate C. limacina when measured at a common temperature (20°C). Oxygen consumption of isolated wing preparations was comparable in the two species when measured at their respective habitat temperatures. These findings indicate complete compensation of ATP generation in wing muscles across a 10°C temperature range, which supports similar wing-beat frequencies during locomotion at each species' respective temperature. The elevated capacity in the wing muscles is reflected in whole-animal oxygen consumption and feeding rates.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3