Evidence of the presence of calcium/calmodulin-dependent protein kinase IV in human sperm and its involvement in motility regulation

Author:

Marín-Briggiler Clara I.1,Jha Kula N.2,Chertihin Olga2,Buffone Mariano G.3,Herr John C.2,Vazquez-Levin Mónica H.1,Visconti Pablo E.4

Affiliation:

1. Instituto de Biología y Medicina Experimental (IBYME) CONICET, Vuelta de Obligado 2490, (1428) Buenos Aires, Argentina

2. Center for Research in Contraception and Reproductive Health (CRCRH), Department of Cell Biology, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA

3. Laboratorio de Estudios en Reproducción, Av. Córdoba 2077, (1120) Buenos Aires, Argentina

4. Department of Veterinary and Animal Sciences, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003, USA

Abstract

The mechanisms involved in the regulation of mammalian sperm motility are not well understood. Calcium ions (Ca2+) have been suggested to play a key role in the maintenance of motility; nevertheless, how Ca2+ modulates this process has not yet been completely characterized. Ca2+ can bind to calmodulin and this complex regulates the activity of multiple enzymes, including Ca2+/calmodulin-dependent protein kinases (CaM kinases). Results from this study confirmed that the presence of Ca2+ in the incubation medium is essential for maintaining human sperm motility. The involvement of CaM kinases in Ca2+ regulation of human sperm motility was evaluated using specific inhibitors (KN62 and KN93) or their inactive analogues (KN04 and KN92 respectively). Sperm incubation in the presence of KN62 or KN93 led to a progressive decrease in the percentage of motile cells; in particular, incubation with KN62 also reduced sperm motility parameters. These inhibitors did not alter sperm viability, protein tyrosine phosphorylation or the follicular fluid-induced acrosome reaction; however, KN62 decreased the total amount of ATP in human sperm. Immunological studies showed that Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) is present and localizes to the human sperm flagellum. Moreover, CaMKIV activity increases during capacitation and is inhibited in the presence of KN62. This report is the first to demonstrate the presence of CaMKIV in mammalian sperm and suggests the involvement of this kinase in the regulation of human sperm motility.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3