Centaurin-α1 interacts directly with kinesin motor protein KIF13B

Author:

Venkateswarlu Kanamarlapudi1,Hanada Toshihiko2,Chishti Athar H.2

Affiliation:

1. Department of Pharmacology, School of Medical Sciences, The University of Bristol, University Walk, Bristol, BS8 1TD, UK

2. Department of Pharmacology, UIC Cancer Center, University of Illinois College of Medicine, 900 S. Ashland Avenue, Chicago, IL 60607, USA

Abstract

Centaurin-α1 is a phosphatidylinositol 3,4,5-trisphosphate binding protein as well as a GTPase activating protein (GAP) for the ADP-ribosylation factor (ARF) family of small GTPases. To further understand its cellular function, we screened a rat brain cDNA library using centaurin-α1 as bait to identify centaurin-α1 interacting proteins. The yeast two-hybrid screen identified a novel kinesin motor protein as a centaurin-α1 binding partner. The motor protein, termed KIF13B, encoded by a single ∼9.5-kb transcript, is widely expressed with high levels observed in brain and kidney. Yeast two-hybrid and GST pull-down assays showed that the interaction between centaurin-α1 and KIF13B is direct and mediated by the GAP domain of centaurin-α1 and the stalk domain of KIF13B. Centaurin-α1 and KIF13B form a complex in vivo and the KIF13B interaction appears to be specific to centaurin-α1 as other members of the ARF GAP family did not show any binding activity. We also show that KIF13B and centaurin-α1 colocalize at the leading edges of the cell periphery whereas a deletion mutant of centaurin-α1 that lacks the KIF13B binding site, failed to colocalize with KIF13B in vivo. Finally, we demonstrate that KIF13B binding suppresses the ARF6 GAP activity of centaurin-α1 in intact cells. Together, our data suggest a mechanism where direct binding between centaurin-α1 and KIF13B could concentrate centaurin-α1 at the leading edges of cells, thus modulating ARF6 function.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3