Serine hydroxymethyl transferase is required for optic lobe neuroepithelia development in Drosophila

Author:

Silva Eunice A. B.1ORCID,Venda Ana M.1ORCID,Homem Catarina C. F.1ORCID

Affiliation:

1. iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa , 1169-056 Lisboa , Portugal

Abstract

ABSTRACT Cell fate and growth require one-carbon units for the biosynthesis of nucleotides, methylation reactions and redox homeostasis, provided by one-carbon metabolism. Consistently, defects in one-carbon metabolism lead to severe developmental defects, such as neural tube defects. However, the role of this pathway during brain development and in neural stem cell regulation is poorly understood. To better understand the role of one carbon metabolism we focused on the enzyme Serine hydroxymethyl transferase (Shmt), a key factor in the one-carbon cycle, during Drosophila brain development. We show that, although loss of Shmt does not cause obvious defects in the central brain, it leads to severe phenotypes in the optic lobe. The shmt mutants have smaller optic lobe neuroepithelia, partly justified by increased apoptosis. In addition, shmt mutant neuroepithelia have morphological defects, failing to form a lamina furrow, which likely explains the observed absence of lamina neurons. These findings show that one-carbon metabolism is crucial for the normal development of neuroepithelia, and consequently for the generation of neural progenitor cells and neurons. These results propose a mechanistic role for one-carbon during brain development.

Funder

European Research Council

Horizon 2020

Howard Hughes Medical Institute

EMBO

Fundação para a Ciência e a Tecnologia

Ministério da Ciência, Tecnologia e Ensino Superior

Wellcome Trust

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3