Conditional in vivo deletion of LYN kinase has little effect on a BRCA1 loss-of-function-associated mammary tumour model

Author:

Tornillo Giusy12,Warrington Lauren12,Kendrick Howard12ORCID,Higgins Adam T.12,Hay Trevor12ORCID,Beck Sam3,Smalley Matthew J.12ORCID

Affiliation:

1. The European Cancer Stem Cell Research Institute 1 , School of Biosciences , , Cardiff CF24 4HQ , UK

2. Cardiff University 1 , School of Biosciences , , Cardiff CF24 4HQ , UK

3. Independent Anatomic Pathology Ltd 2 , Calyx House, South Road, Taunton TA1 3DU , UK

Abstract

ABSTRACT LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.

Funder

Breast Cancer Now

Breast Cancer Research Aid

Cardiff University

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3