Fork head and Sage maintain a uniform and patent salivary gland lumen through regulation of two downstream target genes, PH4αSG1 and PH4αSG2

Author:

Abrams Elliott W.1,Mihoulides Whitney K.1,Andrew Deborah J.1

Affiliation:

1. Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA.

Abstract

(Fkh) is required to block salivary gland apoptosis, internalize salivary gland precursors, prevent expression of duct genes in secretory cells and maintain expression of CrebA, which is required for elevated secretory function. Here, we characterize two new Fkh-dependent genes: PH4αSG1 and PH4αSG2. We show through in vitro DNA-binding studies and in vivo expression assays that Fkh cooperates with the salivary gland-specific bHLH protein Sage to directly regulate expression of PH4αSG2, as well as sage itself, and to indirectly regulate expression of PH4αSG1. PH4αSG1 and PH4αSG2 encode α-subunits of resident ER enzymes that hydroxylate prolines in collagen and other secreted proteins. We demonstrate that salivary gland secretions are altered in embryos missing function of PH4αSG1 and PH4αSG2; secretory content is reduced and shows increased electron density by TEM. Interestingly, the altered secretory content results in regions of tube dilation and constriction, with intermittent tube closure. The regulation studies and phenotypic characterization of PH4αSG1 and PH4αSG2 link Fkh, which initiates tube formation, to the maintenance of an open and uniformly sized secretory tube.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3