DNA and Protein Interactions in the Regulation of Plasmid Replication

Author:

FILUTOWICZ MARCIN1,McEACHERN MICHAEL J.1,MUKHOPADHYAY PRADIP2,GREENER ALAN1,YANG SHENGLI3,HELINSKI DONALD R.1

Affiliation:

1. Department of Biology, B-022, University of California, San Diego, La Jolla, California 92093, USA

2. Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA

3. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 319 Yue-Yang Road, Shanghai 200031, China

Abstract

SUMMARY As for bacterial and animal viruses that employ different mechanisms for their duplication in a host cell, plasmids have evolved different strategies to assure their hereditary stability or maintenance at a specific copy number during cell growth and division. A characteristic feature of plasmid replication control, however, is an involvement of one or more negatively controlling elements. Furthermore, a majority of the bacterial plasmids examined to date contain direct nucleotide sequence repeats at their origin of replication and encode a replication protein that binds to these repeat sequences. The binding of the replication protein (π protein) specified by the antibiotic resistance plasmid R6K to a set of 22 base pair direct nucleotide sequence repeats is required for the initiation of replication at each of three origins of replication (α, β and γ) within a 4 Kb segment of R6K. The π initiation protein is multifunctional in that it has both positive and negative activities in both controlling the initiation of replication and autoregulating its own synthesis. Similarly, the direct repeats of plasmid R6K and several other plasmid systems play more than one role in plasmid replication. These repeats, termed iterons, are not only required for origin activity but also exert a negative effect on plasmid copy number possibly as a result of their ‘titration’ of a plasmid encoded replication protein. The properties of plasmid replication proteins and direct nucleotide sequence repeats that are important for their opposing positive and negative roles in the regulation of the initiation of replication are described with particular emphasis on plasmid R6K of Escherichia coli.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3