Cell Behaviour During Active Cell Rearrangement: Evidence and Speculations

Author:

KELLER RAY1,HARDIN JEFF2

Affiliation:

1. Department of Zoology, University of California at Berkeley, Berkeley, CA 94720, USA

2. Group in Biophysics and Medical Physics, University of California at Berkeley, Berkeley, CA 94720, USA

Abstract

SUMMARY The cell behaviour and motility underlying cell rearrangement during gastrulation in amphibian and sea-urchin embryos are discussed. In particular, the cell behaviour of deep (non-epithelial) and epithelial cell populations that undergo cell rearrangement is compared and contrasted. Deep cell rearrangement in Xenopus laevis involves both convergence of cells towards the future dorsal midline and simultaneous axial extension of the mesodermal cell mass. Time-lapse cinemicrography and scanning electron microscopy suggest that asynchronous, repetitive motions of individual deep cells, involving local extensions and retractions of their margins, may provide the motive force for rearrangement. Such protrusive activity may be guided by local differences in cell–cell contacts in the marginal zone. Epithelial cell rearrangement in the sea-urchin embryo both elongates the archenteron and simultaneously closes the blastopore. Cell rearrangement is accompanied by stage-specific changes in protrusive activity and cell shape of the basal surfaces of cells in the wall of the gut rudiment, in contrast to the apical surfaces, which show little activity. These basal protrusions may be involved in the rearrangement process.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3