Three-dimensional electron microscopy of the internal nucleolus-associated chromatin and of the nucleolar vacuoles during early germination of Sinapis alba

Author:

Deltour R.,Mosen H.,Bronchart R.

Abstract

Spatial relationships between the internal nucleolus-associated chromatin (NAC) and the numerous nucleolar vacuoles that appear during early germination have been studied in nucleoli of quiescent (non-germinated) and early germinating embryos of Sinapis using serial sections. In quiescent non-vacuolated nucleoli, the transcriptionally inactive internal NAC is a short strand about 900 nm thick that in cross-section appears as heterogeneous fibrillar centres (FCs). At 4 and 6 h after germination one or several large networks of interconnected nucleolar vacuoles develop around the dispersing internal NAC. Clumps of dense chromatin are still present within the nucleolar vacuoles and are probably unfolding into deoxyribonucleoprotein (DNP) fibres (about 110 nm thick), which rapidly intrude within the nucleolar body and form thin chromatin threads. At 24 h after germination the internal NAC is more dispersed and forms, for its greatest part, a long thread (about 240 nm in diameter) wrapped up with a few dense fibrillar component, the whole forming the first outline of a nucleolonema. In cross-section most of the internal NAC appears as homogeneous FCs but short portions remain more condensed and appear as heterogeneous FCs always associated with a nucleolar vacuole. From 48 h the internal NAC is a longer thinner strand (about 160 nm in diameter), probably continuous and surrounded entirely by a homogeneous muff of dense fibrillar component, the whole forming a typical nucleolonema (about 950 nm thick) meandering throughout the nucleolus. Small amounts of the internal NAC still remain undispersed in the form of heterogeneous FCs associated with a nucleolar vacuole. The repeated association of nucleolar vacuoles and dispersing internal NAC suggests that they could play a role in chromatin dispersion and, or, activation by creating a favourable microenvironment.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3