Habituated visual neurons in locusts remain sensitive to novel looming objects

Author:

Gray John R.1

Affiliation:

1. Department of Biology, University of Saskatchewan, Saskatoon, SK,Canada S7N 5E2

Abstract

SUMMARYMany animals must contend with visual cues that provide information about the spatiotemporal dynamics of multiple objects in their environment. Much research has been devoted to understanding how an identified pair of interneurons in the locust, the Descending Contralateral Movement Detectors(DCMDs), respond to objects on an impending collision course. However, little is known about how these neurons respond when challenged with multiple,looming objects of different complex shapes. I presented locusts with objects resembling either another locust or a bird approaching on a direct collision course at 3 m s-1 while recording from the DCMD axon within the mesothoracic ganglion. Stimulus presentations were designed to test: (i)whether DCMD habituation was related to the frequency of approach, (ii) if habituated DCMDs were able to respond to a novel stimulus and (iii) if non-looming motion within complex objects (internal object motion) during approach affects habituation. DCMD responses to simulated locusts or birds habituated more when the time interval between consecutive approaches within similar sequences decreased from 34 s to 4 s. Strongly habituated DCMDs were,however, able to respond to the same object approaching along a new trajectory or to a larger object approaching along the same trajectory. Habituation was not affected by internal object motion. These data are consistent with earlier findings that DCMD habituation occurs at localized synapses, which permits maintained sensitivity to multiple objects in the animal's environment.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3