A mitogen gradient of dorsal midline Wnts organizes growth in the CNS

Author:

Megason Sean G.1,McMahon Andrew P.1

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA

Abstract

Cell cycle progression and exit must be precisely patterned during development to generate tissues of the correct size, shape and symmetry. Here we present evidence that dorsal-ventral growth of the developing spinal cord is regulated by a Wnt mitogen gradient. Wnt signaling through the β-catenin/TCF pathway positively regulates cell cycle progression and negatively regulates cell cycle exit of spinal neural precursors in part through transcriptional regulation of cyclin D1 and cyclin D2. Wnts expressed at the dorsal midline of the spinal cord, Wnt1 and Wnt3a, have mitogenic activity while more broadly expressed Wnts do not. We present several lines of evidence suggesting that dorsal midline Wnts form a dorsal to ventral concentration gradient. A growth gradient that correlates with the predicted gradient of mitogenic Wnts emerges as the neural tube grows with the proliferation rate highest dorsally and the differentiation rate highest ventrally. These data are rationalized in a ‘mitogen gradient model’ that explains how proliferation and differentiation can be patterned across a growing field of cells. Computer modeling demonstrates this model is a robust and self-regulating mechanism for patterning cell cycle regulation in a growing tissue.Supplemental data available on-line

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3