Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling

Author:

del Corral Ruth Diez1,Breitkreuz Dorette N.2,Storey Kate G.1

Affiliation:

1. Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dow Street, Dundee, DD1 5EH, UK

2. Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK

Abstract

While many neuronal differentiation genes have been identified, we know little about what determines when and where neurons will form and how this process is coordinated with the differentiation of neighbouring tissues. In most vertebrates the onset of neuronal differentiation takes place in the spinal cord in a head to tail sequence. Here we demonstrate that the changing signalling properties of the adjacent paraxial mesoderm control the progression of neurogenesis in the chick spinal cord. We find an inverse relationship between the expression of caudal neural genes in the prospective spinal cord, which is maintained by underlying presomitic mesoderm and FGF signalling, and neuronal differentiation, which is repressed by such signals and accelerated by somitic mesoderm. We show that key to this interaction is the ability of somitic mesoderm to repress Fgf8 transcription in the prospective spinal cord. Our findings further indicate that attenuation of FGF signalling in the prospective spinal cord is a prerequisite for the onset of neuronal differentiation and may also help to resolve mesodermal and neural cell fates. However, inhibition of FGF signalling alone does not promote the formation of neurons, which requires still further somite signalling. We propose a model in which signalling from somitic tissue promotes the differentiation of the spinal cord and serves to co-ordinate neural and mesodermal development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3