Overexpression of Snail family members highlights their ability to promote chick neural crest formation

Author:

del Barrio Marta G.,Nieto M. Angela1

Affiliation:

1. Instituto Cajal, CSIC, Doctor Arce, 37 28002 Madrid, Spain

Abstract

The Snail gene family of transcription factors plays crucial roles in different morphogenetic processes during the development of vertebrate and invertebrate embryos. In previous studies of function interference for one of the family members, Slug, we showed its involvement and neural crest formation in the chick embryo. Now we have carried out a series of gain-of-function experiments in which we show that Slug overexpression in the neural tube of the chick embryo induces an increase in neural crest production. The analysis of electroporated embryos shows that Slug can induce the expression of rhoB and an increase in the number of HNK-1-positive migratory cells, indicating that it lies upstream of them in the genetic cascade of neural crest development. The increase in neural crest production after Slug overexpression was confined to the cranial region, indicating that the mechanisms of crest induction somehow differ between head and trunk. The expression of the two vertebrate family members, Slug and Snail, is peculiar with respect to the neural crest. Slug is not expressed in the premigratory crest in the mouse, whereas it is expressed in this cell population in the chick and the opposite is true for Snail(Sefton, M., Sánchez, S. and Nieto M. A. (1998) Development125, 3111-3121). This raises the question of whether they can be functionally equivalent. To test this hypothesis both intra- and interspecies, we have performed a series of ectopic expression experiments by electroporating chick and mouse Snail in the chick embryo hindbrain. We observe that both genes elicit the same responses in the neural tube. Our results indicate that they can be functionally equivalent, although the embryos show a higher response to the endogenous gene, chick Slug.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3