The intracellular domains of Notch1 and 2 are functionally equivalent during development and carcinogenesis

Author:

Liu Zhenyi1,Brunskill Eric2,Varnum-Finney Barbara3,Zhang Chi4,Zhang Andrew5,Jay Patrick Y.6,Bernstein Irv37,Morimoto Mitsuru8,Kopan Raphael2

Affiliation:

1. SAGE Labs, A Horizon Discovery Group Company, St. Louis, Missouri 63146, USA

2. Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA

3. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

4. Department of Clinical Medicine, University of Oxford, Oxford, UK

5. University of Minnesota Medical School, Minneapolis, MN 55455, USA

6. Departments of Pediatrics and Genetics, Washington University, Saint Louis, Missouri 63110, USA

7. Department of Pediatrics, University of Washington, Seattle, Washington, USA

8. Lung Development and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan

Abstract

Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they do contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences we examined in detail mice in which N1ICD and N2ICD were swapped. Our data point to the conclusion that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half life of NICD/RBPjk/MAML/DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlies much of the differences between Notch1 and Notch2 in all the contexts we examined including T cell development, skin differentiation and carcinogenesis, the inner ear, the lung, and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue specific γ-secretase complexes following the ICD swap. Reinterpretation of clinical finding based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3