Affiliation:
1. Occidental College, 1600 Campus Road M-3, Los Angeles, CA 90041-3314, USA
2. Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Abstract
SUMMARYCone snails use an extensile, tubular proboscis as a conduit to deliver a potent cocktail of bioactive venom peptides into their prey. Previous studies have focused mainly on understanding the venom's role in prey capture but successful prey capture requires both rapid physiological and biomechanical mechanisms. Conus catus, a fish-hunting species, uses a high-speed hydraulic mechanism to inject its hollow, spear-like radular tooth into prey. We take an integrated approach to investigating the biomechanics of this process by coupling kinematic studies with morphological analyses. Taking advantage of the opaque venom and translucent proboscis of a mollusc-hunting juvenile cone snail, Conus pennaceus, we have determined that a high-speed prey capture mechanism is not unique to cone species that hunt fish prey. Two morphological structures were found to play crucial roles in this process. A constriction of the lumen near the tip of the proboscis, composed of tall epithelial cells densely packed with microfilaments, impedes forward movement of the radular tooth prior to its propulsion. Proximal to the constriction, a muscular sphincter was found to regulate venom flow and pressurization in the proboscis. In C. pennaceus, the rapid appearance and flushing of venom within the proboscis during prey capture suggests a mechanism involving the delivery of a discrete quantity of venom. The interplay between these elements provides a unique and effective biomechanical injection system for the fast-acting cone snail venom peptides.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献