Wings as inertial appendages: how bats recover from aerial stumbles

Author:

Boerma David B.1ORCID,Breuer Kenneth S.21ORCID,Treskatis Tim L.3ORCID,Swartz Sharon M.12ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA

2. School of Engineering, Brown University, Providence, RI 02912, USA

3. Westphalian University of Applied Sciences, 45897 Gelsenkirchen, Germany

Abstract

For many animals, movement through complex natural environments necessitates the evolution of mechanisms that enable recovery from unexpected perturbations. Knowledge of how flying animals contend with disruptive forces is limited, however, and is nearly nonexistent for bats, the only mammals capable of powered flight. We investigated perturbation recovery in Carollia perspicillata by administering a well-defined jet of compressed air, equal to 2.5 times bodyweight, which induced two types of disturbances, termed aerial stumbles: pitch-inducing body perturbations and roll-inducing wing perturbations. In both cases, bats responded primarily by adjusting extension of wing joints, and recovered pre-disturbance body orientation and left-right symmetry of wing motions over the course of only one wingbeat cycle. Bats recovered from body perturbations by symmetrically extending their wings cranially and dorsally during upstroke, and from wing perturbations by asymmetrically extending their wings throughout the recovery wingbeat. We used a simplified dynamical model to test the hypothesis that wing extension asymmetry during recovery from roll-inducing perturbations can generate inertial torques that alone are sufficient to produce the observed body reorientation. Results supported the hypothesis, and also suggested that subsequent restoration of symmetrical wing extension helped decelerate recovery rotation via passive aerodynamic mechanisms. During recovery, humeral elevation/depression remained largely unchanged while bats adjusted wing extension at the elbow and wrist, suggesting a proximo-distal gradient in the neuromechanical control of the wing.

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3