The effects of arm swing on human gait stability

Author:

Bruijn Sjoerd M.1,Meijer Onno G.12,Beek Peter J.1,van Dieën Jaap H.1

Affiliation:

1. Research Institute MOVE, Faculty of Human Movement Sciences, VU University Van der Boechorststraat 9, NL-1081 BT, Amsterdam, The Netherlands

2. Second Affiliated Hospital of Fujian Medical University, Zhongshan Northern Road 34, Quanzhou, 362000 Fujian Province, PR China

Abstract

SUMMARY Arm swing during human gait has been shown to reduce both angular momentum about the vertical and energy expenditure, and has been hypothesized to enhance gait stability. To examine this hypothesis, we studied the effect of arm swing on the local and global stability of steady-state gait, as well as the ability to perform adequate recovery actions following a perturbation. Trunk kinematics of 11 male subjects was measured in treadmill walking with normal and with restricted arm swing. In half of the trials, gait was perturbed by a position-controlled forward pull to the trunk. We constructed state spaces using data recorded from the unperturbed steady-state walking trials, and quantified local gait stability by calculating maximum Lyapunov exponents. In addition, we analyzed perturbation forces, the distance from the unperturbed gait pattern, and the return toward the normal gait pattern following an external perturbation. Walking without arm swing led to a non-significantly lower Lyapunov exponent (P=0.06), significantly higher perturbation forces (P<0.05), and significantly slower movements away from the attractor (P<0.01). These results suggest that gait without arm swing is characterized by similar local stability to gait with arm swing and a higher perturbation resistance. However, return towards the normal gait pattern was significantly slower (P<0.05) when walking with restricted arms, suggesting that the arms play an important role in the recovery from a perturbation. Collectively, the results suggest that arm swing as such does not enhance gait stability, but rather that recovery movements of the arms contribute to the overall stability of human gait.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference43 articles.

1. Rigid body mechanics applied to human movement studies;Berme,1990

2. Coordination of leg swing, thorax rotations, and pelvis rotations during gait: the organisation of total body angular momentum;Bruijn;Gait Posture,2008

3. Statistical precision and sensitivity of measures of dynamic gait stability;Bruijn;J. Neurosci. Methods,2009

4. Is slow walking more stable?;Bruijn;J. Biomech.,2009

5. The validity of stability measures: a modelling approach;Bruijn,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3