INF2 is an endoplasmic reticulum-associated formin protein

Author:

Chhabra Ekta Seth1,Ramabhadran Vinay1,Gerber Scott A.2,Higgs Henry N.1

Affiliation:

1. Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA

2. Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA

Abstract

In addition to its ability to accelerate filament assembly, which is common to formins, INF2 is a formin protein with the unique biochemical ability to accelerate actin filament depolymerization. The depolymerization activity of INF2 requires its actin monomer-binding WASP homology 2 (WH2) motif. In this study, we show that INF2 is peripherally bound to the cytoplasmic face of the endoplasmic reticulum (ER) in Swiss 3T3 cells. Both endogenous INF2 and GFP-fusion constructs display ER localization. INF2 is post-translationally modified by a C-terminal farnesyl group, and this modification is required for ER interaction. However, farnesylation is not sufficient for ER association, and membrane extraction experiments suggest that ionic interactions are also important. The WH2 motif also serves as a diaphanous autoregulatory domain (DAD), which binds to the N-terminal diaphanous inhibitory domain (DID), with an apparent dissociation constant of 1.1 μM. Surprisingly, the DID-DAD interaction does not inhibit the actin nucleation activity of INF2; however, it does inhibit the depolymerization activity. Point mutations to the DAD/WH2 inhibit both the DID-DAD interaction and depolymerization activity. Expression of GFP-INF2 containing these DAD/WH2 mutations causes the ER to collapse around the nucleus, with accumulation of actin filaments around the collapsed ER. This study is the first to show the association of an actin-assembly factor with the ER.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3