Reversible remodeling of lung tissue during hibernation in the Syrian hamster

Author:

Talaei Fatemeh1,Hylkema Machteld N.2,Bouma Hjalmar R.1,Boerema Ate S.3,Strijkstra Arjen M.13,Henning Rob H.1,Schmidt Martina4

Affiliation:

1. Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, PO Box 196, 9700 RB Groningen, The Netherlands

2. Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands

3. Department of Chronobiology, Center for Behavior and Neurosciences, University of Groningen, 9700 RB Groningen, The Netherlands

4. Department of Molecular Pharmacology, University of Groningen, 9700 RB Groningen, The Netherlands

Abstract

SUMMARYDuring hibernation, small rodents such as hamsters cycle through phases of strongly suppressed metabolism with low body temperature (torpor) and full restoration of metabolism and body temperature (arousal). Remarkably, the repetitive stress of cooling–rewarming and hypoxia does not cause irreversible organ damage. To identify adaptive mechanisms protecting the lungs, we assessed histological changes as well as the expression and localization of proteins involved in tissue remodeling in lungs from Syrian hamsters at different phases of hibernation using immunohistochemical staining and western blot analysis. In torpor (early and late) phase, a reversible increased expression of smooth muscle actin, collagen, angiotensin converting enzyme and transforming growth factor-β was found, whereas expression of the epidermal growth factor receptor and caveolin-1 was low. Importantly, all these alterations were restored during arousal. This study demonstrates substantial alterations in protein expression mainly in epithelial cells of lungs from hibernating Syrian hamsters. These structural changes of the bronchial airway structure are termed airway remodeling and often occur in obstructive lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis. Unraveling the molecular mechanism leading to reversal of airway remodeling by the end of torpor may identify possible therapeutic targets to reduce progression of this process in patients suffering from asthma, chronic obstructive pulmonary disease and lung fibrosis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3