Actin-capping protein regulates actomyosin contractility to maintain germline architecture in C. elegans

Author:

Ray Shinjini12,Agarwal Priti1,Nitzan Anat1,Nédélec François3,Zaidel-Bar Ronen1ORCID

Affiliation:

1. Faculty of Medicine, Tel Aviv University 1 Department of Cell and Developmental Biology , , 6997801 Tel Aviv , Israel

2. Graduate Program, Mechanobiology Institute, National University of Singapore, 2 117411 , Singapore

3. Sainsbury Laboratory, University of Cambridge 3 , 47 Bateman Street, Cambridge CB2 1LR , UK

Abstract

ABSTRACT Actin dynamics play an important role in tissue morphogenesis, yet the control of actin filament growth takes place at the molecular level. A challenge in the field is to link the molecular function of actin regulators with their physiological function. Here, we report an in vivo role of the actin-capping protein CAP-1 in the Caenorhabditis elegans germline. We show that CAP-1 is associated with actomyosin structures in the cortex and rachis, and its depletion or overexpression led to severe structural defects in the syncytial germline and oocytes. A 60% reduction in the level of CAP-1 caused a twofold increase in F-actin and non-muscle myosin II activity, and laser incision experiments revealed an increase in rachis contractility. Cytosim simulations pointed to increased myosin as the main driver of increased contractility following loss of actin-capping protein. Double depletion of CAP-1 and myosin or Rho kinase demonstrated that the rachis architecture defects associated with CAP-1 depletion require contractility of the rachis actomyosin corset. Thus, we uncovered a physiological role for actin-capping protein in regulating actomyosin contractility to maintain reproductive tissue architecture.

Funder

Israel Science Foundation

Mechanobiology Institute, Singapore

Council for Higher Education

Tel Aviv University

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3