A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signalling and Bmp signalling

Author:

Drossopoulou G.1,Lewis K.E.1,Sanz-Ezquerro J.J.1,Nikbakht N.1,McMahon A.P.1,Hofmann C.1,Tickle C.1

Affiliation:

1. Department of Anatomy and Physiology, The Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.

Abstract

It has been proposed that digit identity in chick limb bud is specified in a dose-dependent fashion by a long-range morphogen, produced by the polarising region. One candidate is Sonic hedgehog (Shh) protein, but it is not clear whether Shh acts long or short range or via Bmps. Here we dissect the relationship between Shh and Bmp signalling. We show that Shh is necessary not only for initiating bmp2 expression but also for sustaining its expression during the period when additional digits are being specified. We also show that we can reproduce much of the effect of Shh during this period by applying only Bmp2. We further demonstrate that it is Bmps that are responsible for digit specification by transiently adding Noggin or Bmp antibodies to limbs treated with Shh. In such limbs, multiple additional digits still form but they all have the same identity. We also explored time dependency and range of Shh signalling by examining ptc expression. We show that high-level ptc expression is induced rapidly when either Shh beads or polarising regions are grafted to a host limb. Furthermore, we find that high-level ptc expression is first widespread but later more restricted. All these data lead us to propose a new model for digit patterning. We suggest that Shh initially acts long range to prime the region of the limb competent to form digits and thus control digit number. Then later, Shh acts short range to induce expression of Bmps, whose morphogenetic action specifies digit identity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3