Alteration of the retinotectal projection map by the graft of mesencephalic floor plate or sonic hedgehog

Author:

Nomura T.1,Fujisawa H.1

Affiliation:

1. Group of Developmental Neurobiology, Division of Biological Science, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.

Abstract

The floor plate plays crucial roles in the specification and differentiation of neurons along the dorsal-ventral (DV) axis of the neural tube. The transplantation of the mesecephalic floor plate (mfp) into the dorsal mesencephalon in chick embryos alters the fate of the mesencephalon adjacent to the transplant from the tectum to the tegmentum, a ventral tissue of the mesencephalon. In this study, to test whether the mfp is involved in the specification of the DV polarity of the tectum and affects the projection patterns of retinal fibers to the tectum along the DV axis, we transplanted quail mfp into the dorsal mesencephalon of chick embryos, and analyzed projection patterns of dorsal and ventral retinal fibers to the tectum. In the embryos with the mfp graft, dorsal retinal fibers grew into the dorsal part of the tectum which is the original target for ventral but not dorsal retinal fibers and formed tight focuses there. In contrast, ventral retinal fibers did not terminate at any part of the tectum. Transplantation of Sonic hedgehog (Shh)-secreting quail fibroblasts into the dorsal mesencephalon also induced the ectopic tegmentum and altered the retinotectal projection along the DV axis, as the mfp graft did. These results suggest that some factors from the mesencephalic floor plate or the tegmentum, or Shh itself, play a crucial role in the establishment of the DV polarity of the tectum and the retinotectal projection map along the DV axis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3