EXTREME DRAG FORCES AND THE SURVIVAL OF WIND- AND WATER-SWEPT ORGANISMS

Author:

Denny M

Abstract

A stationary organism exposed to steady turbulent flow is subjected to a drag force that fluctuates about a mean, and when the drag on the organism is characterized, it is traditionally this mean force that is cited. Important information is lost, however, when the fluctuations in drag are ignored. This is particularly true when extreme drag forces are relevant; for instance, when predicting the survival of benthic animals on wave-swept shores and in torrential streams, or of plants in windblown terrestrial habitats. This study reports on the probability distribution of drag fluctuations for five objects: a flat plate, large and small cylinders, a sphere and a limpet shell. Distributions vary substantially among different objects exposed to the same mainstream flow; the sphere and limpet exhibit larger fluctuations than the plate and cylinders. The distribution of extremes in drag is used to predict the likelihood that an organism will be dislodged. For organisms in which the applied fluid-dynamic stress is near the mean breaking stress (e.g. some corals, trees and mussels), calculations made using the extreme drag can yield a probability of dislodgment substantially higher than that calculated using the average.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3