Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field

Author:

Rajnicek Ann M.1,Foubister Louise E.1,McCaig Colin D.1

Affiliation:

1. School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, AB25 2ZD, UK

Abstract

Although it is known that neuronal growth cones migrate towards the cathode of an applied direct current (DC) electric field (EF), resembling the EF present in the developing nervous system, the underlying mechanism remains unclear. Here, we demonstrate temporally and spatially coordinated roles for the GTPases Rac, Cdc42 and Rho and their effectors. Growth cones of cultured Xenopus embryonic spinal neurons turned towards the cathode but collective inhibition of Rho, Rac and Cdc42 attenuated turning. Selective inhibition of Rho, Cdc42 or Rac signalling revealed temporally distinct roles in steering by an electrical gradient. Rho, Rac and Cdc42 are each essential for turning within the initial 2 hours (early phase). Later, Rho and Cdc42 signals remain important but Rac signalling dominates. The EF increased Rho immunofluorescence anodally. This correlated spatially with collapsed growth cone morphology and reduced anodal migration rates, which were restored by Rho inhibition. These data suggest that anodally increased Rho activity induces local cytoskeletal collapse, biasing growth cone advance cathodally. Collapse might be mediated by the Rho effectors p160 Rho kinase and myosin light chain kinase since their inhibition attenuated early turning. Inhibitors of phosphoinositide 3-kinase, MEK1/2 or p38 mitogen-activated protein kinase (MAPK) did not affect turning behaviour, eliminating them mechanistically. We propose a mechanism whereby Rac and Cdc42 activities dominate cathodally and Rho activity dominates anodally to steer growth cones towards the cathode. The interaction between Rho GTPases, the cytoskeleton and growth cone dynamics is explored in the companion paper published in this issue. Our results complement studies of growth cone guidance by diffusible chemical gradients and suggest that growth cones might interpret these co-existing guidance cues selectively.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3