Biogenesis and function of the yeast plasma-membrane H(+)-ATPase

Author:

Ambesi A.1,Miranda M.1,Petrov V.V.1,Slayman C.W.1

Affiliation:

1. Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.

Abstract

One of the most abundant proteins in the yeast plasma membrane is the P-type H(+)-ATPase that pumps protons out of the cell, supplying the driving force for a wide array of H(+)-dependent cotransporters. The ATPase is a 100 kDa polypeptide, anchored in the lipid bilayer by 10 transmembrane alpha-helices. It is structurally and functionally related to the P-type Na(+),K(+)-, H(+),K(+)- and Ca(2+)-ATPases of animal cells and the H(+)-ATPases of plant cells, and it shares with them a characteristic reaction mechanism in which ATP is split to ADP and inorganic phosphate (P(i)) via a covalent beta-aspartyl phosphate intermediate. Cryoelectron microscopic images of the H(+)-ATPase of Neurospora crassa and the sarcoplasmic reticulum Ca(2+)-ATPase of animal cells have recently been obtained at 8 nm resolution. The membrane-embedded portion of the molecule, which presumably houses the cation translocation pathway, is seen to be connected via a narrow stalk to a large, multidomained cytoplasmic portion, known to contain the ATP-binding and phosphorylation sites. In parallel with the structural studies, efforts are being made to dissect structure/function relationships in several P-type ATPases by means of site-directed mutagenesis. This paper reviews three phenotypically distinct classes of mutant that have resulted from work on the yeast PMA1 H(+)-ATPase: (1) mutant ATPases that are poorly folded and retained in the endoplasmic reticulum; (2) mutants in which the conformational equilibrium has been shifted from the E(2) state, characterized by high affinity for vanadate, to the E(1) state, characterized by high affinity for ATP; and (3) mutants with altered coupling between ATP hydrolysis and proton pumping. Although much remains to be learned before the transport mechanism can be fully understood, these mutants serve to identify critical parts of the polypeptide that are required for protein folding, conformational change and H(+):ATP coupling.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3