Functional properties of the paracellular pathway in some leaky epithelia

Author:

Kottra G.,Fromter E.

Abstract

We here review the functional properties of the paracellular pathway of leaky epithelia such as gallbladder and renal proximal tubule. These epithelia are characterized by leaky terminal bars between adjacent cells which allow small ions, non-electrolytes and water to leak from lumen to interstitial fluid or back. In the past 10 years a great deal of information has been obtained about the properties of the misnamed ‘tight’ junctions in the terminal bars, by assuming that the overall permeation pattern reflected predominantly the junctional permeation properties. Although recent trans- and intraepithelial impedance analyses indicate that this assumption is not always justified (the contribution of the lateral intercellular space to the paracellular shunt resistance is not negligible, when the spaces are collapsed) it seems that the major conclusions are correct. The properties of the terminal junctions may thus be summarized as follows. (1) Large molecules such as horseradish peroxidase are not able to pass. (2) Passage of lipophilic substances is insignificant, as these substances permeate by the cellular route. (3) Depending on the tissue, ion permeation is either governed by channels with negative fixed charges, or positive fixed charges, or both. As inferred from ion selectivity patterns the channels of different epithelia are either wide and highly hydrated or narrow and poorly hydrated, thus allowing more or less water molecules to pass besides the ions. In narrow channels single-file diffusion may occur. (4) Besides the selective channels a free solution shunt seems to be present in some epithelia. (5) When applied in millimolar concentrations 2,4,6-triaminopyrimidinium and amiloride block negatively charged junctional channels. However these substances do not simply turn leaky epithelia into tight epithelia, because they have additional effects on the cell membranes. (6) As observed in cell cultures, formation of tight junctions requires connecting particles to be present on the cell surface--which seems to be controlled by the cytoskeleton-- and requires the presence of calcium ions as ligands. (7) Cellular control over paracellular permeability may be exerted through changes of intracellular calcium concentration.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3