Affiliation:
1. Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
2. School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
Abstract
High-altitude environments are cold and hypoxic, and many high-altitude natives have evolved changes in respiratory physiology that improve O2 uptake in hypoxia as adults. Altricial mammals undergo a dramatic metabolic transition from ectothermy to endothermy in early post-natal life, which may influence the ontogenetic development of respiratory traits at high altitude. We examined the developmental changes in respiratory and haematological traits in deer mice (Peromyscus maniculatus) native to high altitude, comparing the respiratory responses to progressive hypoxia between highland and lowland deer mice. Among adults, highlanders exhibited higher total ventilation and more effective breathing pattern (relatively deeper tidal volumes), for mice that were caught and tested at their native altitudes and those lab-raised in normoxia. Lab-raised progeny of each population were also tested at post-natal day (P) 7, 14, 21, and 30. Highlanders developed an enhanced hypoxic ventilatory response by P21, concurrent with the full maturation of the carotid bodies, and their more effective breathing pattern arose by P14; these ages correspond to critical benchmarks in the full development of homeothermy in highlanders. However, highlanders exhibited developmental delays in ventilatory sensitivity to hypoxia, hyperplasia of type I cells in the carotid body, and increases in blood haemoglobin content compared to lowland mice. Nevertheless, highlanders maintained consistently higher arterial O2 saturation in hypoxia across development, in association with increases in blood-O2 affinity that were apparent from birth. We conclude that evolved changes in respiratory physiology in high-altitude deer mice become expressed in association with the post-natal development of endothermy.
Funder
Natural Sciences and Engineering Research Council of Canada
National Institutes of Health
National Science Foundation
Canada Research Chairs
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference62 articles.
1. Image processing with Imagej;Abràmoff;Biophotonics Int.,2004
2. Regulation of breathing at birth;Adamson;J. Dev. Physiol.,1991
3. Postnatal growth of the mouse lung;Amy;J. Anat.,1977
4. Postnatal maturation of carotid body and type I cell chemoreception in the rat;Bamford;Am. J. Physiol.,1999
5. Causes of the postnatal decrease of blood oxygen affinity in lambs;Baumann;Respir. Physiol.,1972
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献