Suppression of Na+/K+-ATPase activity during estivation in the land snailOtala lactea

Author:

Ramnanan Christopher J.1,Storey Kenneth B.1

Affiliation:

1. Institute of Biochemistry and Department of Biology, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario,Canada K1S 5B6

Abstract

SUMMARYEntry into the hypometabolic state of estivation requires a coordinated suppression of the rate of cellular ATP turnover, including both ATP-generating and ATP-consuming reactions. As one of the largest consumers of cellular ATP, the plasma membrane Na+/K+-ATPase is a potentially key target for regulation during estivation. Na+/K+-ATPase was investigated in foot muscle and hepatopancreas of the land snail Otala lactea, comparing active and estivating states. In both tissues enzyme properties changed significantly during estivation: maximal activity was reduced by about one-third, affinity for Mg.ATP was reduced (Km was 40% higher), and activation energy (derived from Arrhenius plots) was increased by ∼45%. Foot muscle Na+/K+-ATPase from estivated snails also showed an 80%increase in Km Na+ and a 60% increase in Ka Mg2+ as compared with active snails, whereas hepatopancreas Na+/K+-ATPase showed a 70% increase in I50 K+ during estivation. Western blotting with antibodies recognizing the alpha subunit of Na+/K+-ATPase showed no change in the amount of enzyme protein during estivation. Instead, the estivation-responsive change in Na+/K+-ATPase activity was linked to posttranslational modification. In vitro incubations manipulating endogenous kinase and phosphatase activities indicated that Na+/K+-ATPase from estivating snails was a high phosphate, low activity form, whereas dephosphorylation returned the enzyme to a high activity state characteristic of active snails. Treatment with protein kinases A, C or G could all mediate changes in enzyme properties in vitro that mimicked the effect of estivation, whereas treatments with protein phosphatase 1 or 2A had the opposite effect. Reversible phosphorylation control of Na+/K+-ATPase can provide the means of coordinating ATP use by this ion pump with the rates of ATP generation by catabolic pathways in estivating snails.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3