The control of wing kinematics and flight forces in fruit flies (Drosophila spp.).

Author:

Lehmann F O,Dickinson M H

Abstract

By simultaneously measuring flight forces and stroke kinematics in several species of fruit flies in the genus Drosophila, we have investigated the relationship between wing motion and aerodynamic force production. We induced tethered flies to vary their production of total flight force by presenting them with a vertically oscillating visual background within a closed-loop flight arena. In response to the visual motion, flies modulated their flight force by changing the translational velocity of their wings, which they accomplished via changes in both stroke amplitude and stroke frequency. Changes in wing velocity could not, however, account for all the modulation in flight force, indicating that the mean force coefficient of the wings also increases with increasing force production. The mean force coefficients were always greater than those expected under steady-state conditions under a variety of assumptions, verifying that force production in Drosophila spp. must involve non-steady-state mechanisms. The subtle changes in kinematics and force production within individual flight sequences demonstrate that flies possess a flexible control system for flight maneuvers in which they can independently control the stroke amplitude, stroke frequency and force coefficient of their wings. By studying four different-sized species, we examined the effects of absolute body size on the production and control of aerodynamic forces. With decreasing body size, the mean angular wing velocity that is required to support the body weight increases. This change is due almost entirely to an increase in stroke frequency, whereas mean stroke amplitude was similar in all four species. Despite the elevated stroke frequency and angular wing velocity, the translational velocity of the wings in small flies decreases with the reduction in absolute wing length. To compensate for their small size, D. nikananu must use higher mean force coefficients than their larger relatives.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3