Organic matrix synthesis in the scleractinian coral stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin

Author:

Allemand D1,Tambutté É1,Girard JP1,Jaubert J1

Affiliation:

1. Observatoire Oceanologique Europeen, Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco, Principality of Monaco, Commissariat a l'Energie Atomique - LDG, BP 12, F-91680 Bruyeres-Le-Chatel Cedex, France and Laborat.

Abstract

The kinetics of organic matrix biosynthesis and incorporation into scleractinian coral skeleton was studied using microcolonies of Stylophora pistillata. [14C]Aspartic acid was used to label the organic matrix since this acidic amino acid can represent up to 50 mol % of organic matrix proteins. External aspartate was rapidly incorporated into tissue protein without any detectable lag phase, suggesting either a small intracellular pool of aspartic acid or a pool with a fast turn-over rate. The incorporation of 14C-labelled macromolecules into the skeleton was linear over time, after an initial delay of 20 min. Rates of calcification, measured by the incorporation of 45Ca into the skeleton, and of organic matrix biosynthesis and incorporation into the skeleton were constant. Inhibition of calcification by the Ca2+ channel inhibitor verapamil reduced the incorporation of organic matrix proteins into the skeleton. Similarly, organic matrix incorporation into the skeleton, but not protein synthesis for incorporation into the tissue compartment, was dependent on the state of polymerization of both actin and tubulin, as shown by the sensitivity of this process to cytochalasin B and colchicin. These drugs may inhibit exocytosis of organic matrix proteins into the subcalicoblastic space. Finally, inhibition of protein synthesis by emetin or cycloheximide and inhibition of N-glycosylation by tunicamycin reduced both the incorporation of macromolecules into the skeleton and the rate of calcification. This suggests that organic matrix biosynthesis and its migration towards the site of calcification may be a prerequisite step in the calcification process. On the basis of these results, we investigated the effects of tributyltin (TBT), a component of antifouling painting known to interfere with biomineralization processes. Our results have shown that this xenobiotic significantly inhibits protein synthesis and the subsequent incorporation of protein into coral skeleton. This effect was correlated with a reduction in the rate of calcification. Protein synthesis was shown to be the parameter most sensitive to TBT (IC50=0.2 micromol l-1), followed by aspartic acid uptake by coral tissue (IC50=0.6 micromol l-1), skeletogenesis (IC50=3 micromol l-1) and Ca2+ uptake by coral tissue (IC50=20 micromol l-1). These results suggest that the mode of action of TBT on calcification may be the inhibition of organic matrix biosynthesis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3