In vivo pectoralis muscle force-length behavior during level flight in pigeons (Columba livia)

Author:

Biewener A. A.,Corning W. R.,Tobalske B. W.

Abstract

For the first time, we report in vivo measurements of pectoralis muscle length change obtained using sonomicrometry combined with measurements of its force development via deltopectoral crest strain recordings of a bird in free flight. These measurements allow us to characterize the contractile behavior and mechanical power output of the pectoralis under dynamic conditions of slow level flight in pigeons Columba livia. Our recordings confirm that the pigeon pectoralis generates in vivo work loops that begin with the rapid development of force as the muscle is being stretched or remains nearly isometric near the end of the upstroke. The pectoralis then shortens by a total of 32 % of its resting length during the downstroke,generating an average of 10.33.6 J kg-1 muscle (mean s.d.) of work per cycle for the anterior and posterior sites recorded among the five animals. In contrast to previous kinematic estimates of muscle length change relative to force development, the sonomicrometry measurements of fascicle length change show that force declines during muscle shortening. Simultaneous measurements of fascicle length change at anterior and posterior sites within the same muscle show significant (P<0.001, three of four animals) differences in fractional length (strain) change that averaged 1912 %, despite exhibiting similar work loop shape. Length changes at both anterior and posterior sites were nearly synchronous and had an asymmetrical pattern, with shortening occupying 63 % of the cycle. This nearly 2:1 phase ratio of shortening to lengthening probably favors the ability of the muscle to do work. Mean muscle shortening velocity was 5.381.33 and 4.881.27 lengths s-1 at the anterior and posterior sites respectively. Length excursions of the muscle were more variable at the end of the downstroke (maximum shortening), particularly when the birds landed,compared with highly uniform length excursions at the end of the upstroke(maximum lengthening). When averaged for the muscle as a whole, our in vivo work measurements yield a mass-specific net mechanical power output of 70. 2 W kg-1 for the muscle when the birds flew at 5-6 m s-1, with a wingbeat frequency of 8.7 Hz. This is 38 % greater than the value that we obtained previously for wild-type pigeons, but still 24-50 % less than that predicted by theory.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3