A somatic permeability barrier around the germline is essential for Drosophila spermatogenesis

Author:

Fairchild Michael J.1,Smendziuk Christopher M.1,Tanentzapf Guy1

Affiliation:

1. Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada

Abstract

Interactions between the soma and germline are essential for gametogenesis. In the Drosophila testis, differentiating germ cells are encapsulated by two somatic cells that surround the germline throughout spermatogenesis. chickadee (chic), the fly ortholog of Profilin, mediates soma-germline interactions. Knockdown of Chic in the soma results in sterility and severely disrupted spermatogenesis due to defective encapsulation. To study this defect further, we developed a permeability assay to analyze whether the germline is isolated from the surrounding environment by the soma. We find that germline encapsulation by the soma is, by itself, insufficient for the formation of a permeability barrier, but that such a barrier gradually develops during early spermatogenesis. Thus, germline stem cells, gonialblasts and early spermatogonia are not isolated from the outside environment. By late spermatocyte stages, however, a permeability barrier is formed by the soma. Furthermore, we find that, concomitant with formation of the permeability barrier, septate junction markers are expressed in the soma and localize to junctional sites connecting the two somatic cells that surround the germline. Importantly, knockdown of septate junction components also disrupts the permeability barrier. Finally, we show that germline differentiation is delayed when the permeability barrier is compromised. We propose that the permeability barrier around the germline serves an important regulatory function during spermatogenesis by shaping the signaling events that take place between the soma and the germline.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference73 articles.

1. Organization and function of septate junctions: an evolutionary perspective;Banerjee;Cell Biochem. Biophys.,2006

2. Lactate and energy metabolism in male germ cells;Boussouar;Trends Endocrinol. Metabol.,2004

3. The carnegie protein trap library: a versatile tool for Drosophila developmental studies;Buszczak;Genetics,2007

4. The use of fluorescent dextrans as a marker of sarcolemmal injury;Carter;Histol. Histopathol.,1994

5. Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells;Chen;Curr. Biol.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3