Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3

Author:

Del Real Marissa Morales1,Rothenberg Ellen V.1

Affiliation:

1. Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.

Abstract

Hematopoiesis is a classic system with which to study developmental potentials and to investigate gene regulatory networks that control choices among alternate lineages. T-cell progenitors seeding the thymus retain several lineage potentials. The transcription factor PU.1 is involved in the decision to become a T cell or a myeloid cell, and the developmental outcome of expressing PU.1 is dependent on exposure to Notch signaling. PU.1-expressing T-cell progenitors without Notch signaling often adopt a myeloid program, whereas those exposed to Notch signals remain in a T-lineage pathway. Here, we show that Notch signaling does not alter PU.1 transcriptional activity by degradation/alteration of PU.1 protein. Instead, Notch signaling protects against the downregulation of T-cell factors so that a T-cell transcriptional network is maintained. Using an early T-cell line, we describe two branches of this network. The first involves inhibition of E-proteins by PU.1 and the resulting inhibition of Notch signaling target genes. Effects of E-protein inhibition can be reversed by exposure to Notch signaling. The second network is dependent on the ability of PU.1 to inhibit important T-cell transcription factor genes such as Myb, Tcf7 and Gata3 in the absence of Notch signaling. We show that maintenance of Gata3 protein levels by Myb and Notch signaling is linked to the ability to retain T-cell identity in response to PU.1.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference40 articles.

1. Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage;Anderson;Immunity,2002

2. Visualizing PU.1 activity during hematopoiesis;Back;Exp. Hematol.,2005

3. Transcriptional regulation of erythropoiesis: an affair involving multiple partners;Cantor;Oncogene,2002

4. Signals transduced by CD3ε, but not by surface pre-TCR complexes, are able to induce maturation of an early thymic lymphoma in vitro;Carleton;J. Immunol.,1999

5. Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate;Chou;Blood,2009

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3