A novel chemical screening strategy in zebrafish identifies common pathways in embryogenesis and rhabdomyosarcoma development

Author:

Le Xiuning1,Pugach Emily K.1,Hettmer Simone2,Storer Narie Y.1,Liu Jianing2,Wills Airon A.3,DiBiase Antony1,Chen Eleanor Y.4,Ignatius Myron S.4,Poss Kenneth D.3,Wagers Amy J.2,Langenau David M.4,Zon Leonard I.1

Affiliation:

1. Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA

2. Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Joslin Diabetes Center, Boston, MA 02115, USA

3. Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA

4. Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129 and Harvard Stem Cell Institute, Boston, MA 02114, USA

Abstract

The zebrafish is a powerful genetic model that has only recently been used to dissect developmental pathways involved in oncogenesis. We hypothesized that operative pathways during embryogenesis would also be used for oncogenesis. In an effort to define RAS target genes during embryogenesis, gene expression was evaluated in Tg(hsp70-HRASG12V) zebrafish embryos subjected to heat shock. dusp6 was activated by RAS, and this was used as the basis for a chemical genetic screen to identify small molecules that interfere with RAS signaling during embryogenesis. A KRASG12D-induced zebrafish embryonal rhabdomyosarcoma was then used to assess the therapeutic effects of the small molecules. Two of these inhibitors, PD98059 and TPCK, had anti-tumor activity as single agents in both zebrafish embryonal rhabdomyosarcoma and a human cell line of rhabdomyosarcoma that harbored activated mutations in NRAS. PD98059 inhibited MEK1 whereas TPCK suppressed S6K1 activity; however, the combined treatment completely suppressed eIF4B phosphorylation and decreased translation initiation. Our work demonstrates that the activated pathways in RAS induction during embryogenesis are also important in oncogenesis and that inhibition of these pathways suppresses tumor growth.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3