Affiliation:
1. Laboratory of Cell Biology, School of Optometry, Indiana University, Bloomington 47405.
Abstract
Calpain II was purified to apparent homogeneity from bovine neural retinas. It was found to be biochemically similar to brain calpain II, purified by the same procedure, with respect to: subunit mobility in SDS-polyacrylamide gel electrophoresis; Ca2+ sensitivity; inhibition by calpeptin and other cysteine protease inhibitors; and optimal pH. Semithin cryosections were immuno-labeled with antibodies specific for the catalytic subunit of calpain II. Calpain II was detected in most layers of the retina, with the most pronounced label present in the plexiform layers (synaptic regions) and the photoreceptor outer segments. In dark-adapted retinas, the label was distributed throughout the outer segments. In light-adapted retinas, outer segment labeling was concentrated in the connecting cilium, and the inner segments were labeled. A partially pure preparation of calpain II from isolated rod outer segments was found to have the same biochemical characteristics as calpain II prepared in the same way from the whole retina. The enzyme was distributed fairly evenly between the cytosolic and cytoskeletal fractions of isolated rod outer segments. Immunoblots of the rod outer segment cytoskeleton were used to determine the susceptibility of known components of the actin-based cytoskeleton to proteolysis by calpain II in vitro. Actin was not proteolyzed at all, alpha-actinin was only slowly degraded, but myosin II heavy chain was rapidly proteolyzed. Actin filaments have been shown previously to be associated with myosin II and alpha-actinin in a small domain within the connecting cilium, where they play an essential role in the morphogenesis of new disk membranes. The localization of calpain II in the connecting cilium after light exposure, combined with the in vitro proteolysis of myosin II, suggests that calpain II could be involved in light-dependent regulation of disk membrane morphogenesis by proteolysis of myosin II.
Publisher
The Company of Biologists
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献