Intrinsic function of the peptidylarginine deiminase PADI4 is dispensable for normal haematopoiesis

Author:

Young Christine12,Russell John R.1,Van De Lagemaat Louie N.23,Lawson Hannah23,Mapperley Christopher23,Kranc Kamil R.23,Christophorou Maria A.124ORCID

Affiliation:

1. The Institute of Genetics and Molecular Medicine, University of Edinburgh 1 MRC Human Genetics Unit , , Edinburgh EH4 2XU , United Kingdom

2. Centre for Regenerative Medicine, University of Edinburgh 2 , Edinburgh EH16 4UU , United Kingdom

3. Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London 3 Laboratory of Haematopoietic Stem Cell & Leukaemia Biology , , London EC1M6BQ , United Kingdom

4. Epiegetics, Babraham Institute 4 , Cambridge CB22 3AT , United Kingdom

Abstract

ABSTRACT Peptidylarginine deiminases (PADIs) are strongly associated with the development of autoimmunity, neurodegeneration and cancer but their physiological roles are ill-defined. The nuclear deiminase PADI4 regulates pluripotency in the mammalian pre-implantation embryo but its function in tissue development is unknown. PADI4 is primarily expressed in the bone marrow, as part of a self-renewal-associated gene signature. It has been shown to regulate the proliferation of multipotent haematopoietic progenitors and proposed to impact on the differentiation of haematopoietic stem cells (HSCs), suggesting that it controls haematopoietic development or regeneration. Using conditional in vivo models of steady state and acute Padi4 ablation, we examined the role of PADI4 in the development and function of the haematopoietic system. We found that PADI4 loss does not significantly affect HSC self-renewal or differentiation potential upon injury or serial transplantation, nor does it lead to HSC exhaustion or premature ageing. Thus PADI4 is dispensable for cell-autonomous HSC maintenance, differentiation and haematopoietic regeneration. This work represents the first study of PADI4 in tissue development and indicates that pharmacological PADI4 inhibition may be tolerated without adverse effects.

Funder

Wellcome Trust

Royal Society

Cancer Research UK

Medical Research Council

Kay Kendall Leukaemia Fund

Babraham Institute

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3