Regulation of Golgi structure and function by ARF-like protein 1 (Arl1)

Author:

Lu Lei1,Horstmann Heinz1,Ng Cheepeng1,Hong Wanjin1

Affiliation:

1. Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore

Abstract

Arl1 is a member of the ARF-like protein (Arl) subfamily of small GTPases. Nothing is known about the function of Arl1 except for the fact that it is essential for normal development in Drosophila and that it is associated with the Golgi apparatus. In this study, we first demonstrate that Arl1 is enriched at the trans side of the Golgi, marked by AP-1. Association of Arl1 with the Golgi is saturable in intact cells and depends on N-terminal myristoylation. Over-expression of Arl1(T31N), which is expected to be restricted to the GDP-bound form and thus function as a dominant-negative mutant, causes the disappearance of the Golgi apparatus (marked by Golgi SNARE GS28), suggesting that Arl1 is necessary for maintaining normal Golgi structure. Overexpression of Arl1(Q71L), a mutant restricted primarily to the activated GTP-bound form, causes an expansion of the Golgi apparatus with massive and stable Golgi association of COPI and AP-1 coats. Interestingly, Golgi ARFs also become stably associated with the expanded Golgi. Transport of the envelope protein of vesicular stomatitis virus (VSV-G) along the secretory pathway is arrested at the expanded Golgi upon expression of Arl1(Q71L). The structure of stacked cisternae of the Golgi is disrupted in cells expressing Arl1(Q71L), resulting in the transformation of the Golgi into an extensive vesicule-tubule network. In addition, the GTP form of Arl1 interacts with arfaptin-2/POR1 but not GGA1, both of which interact with GTP-restricted ARF1, suggesting that Arl1 and ARF1 share some common effectors in regulating cellular events. On the basis of these observations, we propose that one of the mechanisms for the cell to regulate the structure and function of the Golgi apparatus is through the action of Arl1.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3