Growth factors but not gap junctions play a role in injury-induced Ca2+ waves in epithelial cells

Author:

Klepeis Veronica E.1,Cornell-Bell Ann2,Trinkaus-Randall Vickery34

Affiliation:

1. Departments of Pathology,

2. Cognetix, Inc., Ivoryton, CT 06442, USA

3. Ophthalmology and

4. Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA

Abstract

This paper characterizes the early responses of epithelial cells to injury. Ca2+ is an important early messenger that transiently increases in the cytoplasm of cells in response to external stimuli. Its elevation leads to the regulation of signaling pathways responsible for the downstream events important for wound repair, such as cell migration and proliferation. Live cell imaging in combination with confocal laser scanning microscopy of fluo-3 AM loaded cells was performed. We found that mechanical injury in a confluent region of cells creates an elevation in Ca2+ that is immediately initiated at the wound edge and travels as a wave to neighboring cells, with [Ca2+]i returning to background levels within two minutes. Addition of epidermal growth factor (EGF), but not platelet-derived growth factor-BB, resulted in increased [Ca2+]i, and EGF specifically enhanced the amplitude and duration of the injury-induced Ca2+ wave. Propagation of the Ca2+ wave was dependent on intracellular Ca2+ stores, as was demonstrated using both thapsigargin and Ca2+ chelators (EGTA and BAPTA/AM). Injury-induced Ca2+ waves were not mediated via gap junctions, as the gap-junction inhibitors 1-heptanol and 18α-glycyrrhetinic acid did not alter wave propagation, nor did the cells recover in photobleaching experiments. Additional studies also demonstrated that the wave could propagate across an acellular region. The propagation of the injury-induced Ca2+ wave occurs via diffusion of an extracellular mediator, most probably via a nucleotide such as ATP or UTP, that is released upon cell damage. Movies available on-line

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3