Inhibition of neuronal maturation in primary hippocampal neurons from τ deficient mice

Author:

Dawson H.N.1,Ferreira A.1,Eyster M.V.1,Ghoshal N.1,Binder L.I.1,Vitek M.P.1

Affiliation:

1. Division of Neurology, Department of Medicine, Duke University, Durham, NC 27710 and OSV, Inc., Research Triangle Park, NC 27709, USA. dawso009@mc.duke.edu

Abstract

Conflicting evidence supports a role for τ as an essential neuronal cytoskeletal protein or as a redundant protein whose function can be fulfilled by other microtubule-associated proteins. To investigate the function of τ in axonogenesis, we created τ deficient mice by disrupting the TAU gene. The engineered mice do not express the τ protein, appear physically normal and are able to reproduce. In contrast to a previously reported τ knockout mouse, embryonic hippocampal cultures from τ deficient mice show a significant delay in maturation as measured by axonal and neuritic extensions. The classic technique of selectively enhancing axonal growth by growth on laminin substrates failed to restore normal neuronal maturation of τ knockout neurons. By mating human TAU-gene transgenic and τ knockout mice, we reconstituted τ-deficient neurons with human τ proteins and restored a normal pattern of axonal growth and neuronal maturation. The ability of human τ proteins to rescue τ-deficient mouse neurons confirms that τ expression affects the rate of neurite extension.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3