Cytoplasmic dynein is required to oppose the force that moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii

Author:

Alberti-Segui C.1,Dietrich F.1,Altmann-Johl R.1,Hoepfner D.1,Philippsen P.1

Affiliation:

1. Department of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.

Abstract

We have followed the migration of GFP-labelled nuclei in multinucleate hyphae of Ashbya gossypii. For the first time we could demonstrate that the mode of long range nuclear migration consists of oscillatory movements of nuclei with, on average, higher amplitudes in the direction of the growing tip. We could also show that mitotic division proceeds at a constant rate of 0. 64 microm/minute which differs from the biphasic kinetics described for the yeast Saccharomyces cerevisiae. Furthermore we were able to identify the microtubule-based motor dynein as a key element in the control of long range nuclear migration. For other filamentous fungi it had already been demonstrated that inactivating mutations in dynein led to severe problems in nuclear migration, i.e. generation of long nuclei-free hyphal tips and clusters of nuclei throughout the hyphae. This phenotype supported the view that dynein is important for the movement of nuclei towards the tip. In A. gossypii the opposite seems to be the case. A complete deletion of the dynein heavy chain gene leads to nuclear clusters exclusively at the hyphal tips and to an essentially nucleus-free network of hyphal tubes and branches. Anucleate hyphae and branches in the vicinity of nuclear clusters show actin cables and polarized actin patches, as well as microtubules. The slow growth of this dynein null mutant could be completely reverted to wild-type-like growth in the presence of benomyl, which can be explained by the observed redistribution of nuclei in the hyphal network.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3