Evidence for a role for a Plasmodium falciparum homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes

Author:

Adisa Akinola1,Albano Frank R.,Reeder John2,Foley Michael1,Tilley Leann1

Affiliation:

1. Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia

2. Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea

Abstract

The malaria parasite, Plasmodium falciparum, spends part of its life cycle inside the enucleated erythrocytes of its human host. The parasite modifies the cytoplasm and plasma membrane of its host cell by exporting proteins beyond the confines of its own plasma membrane. We have previously provided evidence that a plasmodial homologue of the COPII protein, Sar1p, is involved in the trafficking of proteins across the erythrocyte cytoplasm. We have now characterised an additional plasmodial COPII protein homologue, namely Sec31p. Recombinant proteins corresponding to the WD-40 and the intervening domains of the PfSec31p sequence were used to raise antibodies. The affinity-purified antisera recognised a protein with an apparent relative molecular mass of 1.6×105 on western blots of malaria parasite-infected erythrocytes but not on blots of uninfected erythrocytes. PfSec31p was shown to be largely insoluble in nonionic detergent, suggesting cytoskeletal attachment. Confocal immunofluorescence microscopy of malaria parasite-infected erythrocytes was used to show that PfSec31p is partly located within the parasite and partly exported to structures outside the parasite in the erythrocyte cytoplasm. We have also shown that PfSec31p and PfSar1p occupy overlapping locations. Furthermore, the location of PfSec31p overlaps that of the cytoadherence-mediating protein PfEMP1. These data support the suggestion that the malaria parasite establishes a vesicle-mediated trafficking pathway outside the boundaries of its own plasma membrane – a novel paradigm in eukaryotic biology.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3