Affiliation:
1. Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia
2. Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
Abstract
The malaria parasite, Plasmodium falciparum, spends part of its life cycle inside the enucleated erythrocytes of its human host. The parasite modifies the cytoplasm and plasma membrane of its host cell by exporting proteins beyond the confines of its own plasma membrane. We have previously provided evidence that a plasmodial homologue of the COPII protein, Sar1p, is involved in the trafficking of proteins across the erythrocyte cytoplasm. We have now characterised an additional plasmodial COPII protein homologue, namely Sec31p. Recombinant proteins corresponding to the WD-40 and the intervening domains of the PfSec31p sequence were used to raise antibodies. The affinity-purified antisera recognised a protein with an apparent relative molecular mass of 1.6×105 on western blots of malaria parasite-infected erythrocytes but not on blots of uninfected erythrocytes. PfSec31p was shown to be largely insoluble in nonionic detergent, suggesting cytoskeletal attachment. Confocal immunofluorescence microscopy of malaria parasite-infected erythrocytes was used to show that PfSec31p is partly located within the parasite and partly exported to structures outside the parasite in the erythrocyte cytoplasm. We have also shown that PfSec31p and PfSar1p occupy overlapping locations. Furthermore, the location of PfSec31p overlaps that of the cytoadherence-mediating protein PfEMP1. These data support the suggestion that the malaria parasite establishes a vesicle-mediated trafficking pathway outside the boundaries of its own plasma membrane – a novel paradigm in eukaryotic biology.
Publisher
The Company of Biologists
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献