IP3 receptor function and localization in myotubes: an unexplored Ca2+ signaling pathway in skeletal muscle

Author:

Powell Jeanne A.12,Carrasco Maria Angelica32,Adams Dany S.1,Drouet Beatrice4,Rios Juan3,Müller Marioly3,Estrada Manuel3,Jaimovich Enrique32

Affiliation:

1. Department of Biological Sciences, Smith College, Northampton, MA 01063, USA

2. These authors have contributed equally to this work

3. Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 6530499, Chile

4. Inserm U-505, 15 rue de l’Ecole de Medecine, 75006, Paris, France

Abstract

We present evidence for an unexplored inositol 1,4,5-trisphosphate-mediated Ca2+ signaling pathway in skeletal muscle. RT-PCR methods confirm expression of all three known isotypes of the inositol trisphosphate receptor in cultured rodent muscle. Confocal microscopy of cultured mouse muscle, doubly labeled for inositol receptor type 1 and proteins of known distribution, reveals that the receptors are localized to the I band of the sarcoplasmic reticulum, and this staining is continuous with staining of the nuclear envelope region. These results suggest that the receptors are positioned to mediate a slowly propagating Ca2+ wave that follows the fast Ca2+ transient upon K+ depolarization. This slow wave, imaged using fluo-3, resulted in an increase in nucleoplasmic Ca2+ lasting tens of seconds, but not contraction; the slow wave was blocked by both the inositol trisphosphate receptor inhibitor 2-aminoethoxydiphenyl borate and the phospholipase C inhibitor U-73122. To test the hypothesis that these slow Ca2+ signals are involved in signal cascades leading to regulation of gene expression, we assayed for early effects of K+ depolarization on mitogen-activated protein kinases, specifically extracellular-signal related kinases 1 and 2 and the transcription factor cAMP response element-binding protein (CREB). Within 30-60 seconds following depolarization, phosphorylation of both the kinases and CREB was evident and could be inhibited by 2-aminoethoxydiphenyl borate. These results suggest a signaling system mediated by Ca2+ and inositol trisphosphate that could regulate gene expression in muscle cells.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3